THE p–ADIC ORDER OF POWER SUMS, THE ERDŐS –MOSER EQUATION, AND BERNOULLI NUMBERS

نویسندگان

  • JONATHAN SONDOW
  • EMMANUEL TSUKERMAN
چکیده

The Erdős–Moser equation is a Diophantine equation proposed more than 60 years ago which remains unresolved to this day. In this paper, we consider the problem in terms of divisibility of power sums and in terms of certain Egyptian fraction equations. As a consequence, we show that solutions must satisfy strong divisibility properties and a restrictive Egyptian fraction equation. Our studies lead us to results on the Bernoulli numbers and allow us to motivate Moser’s original approach to the problem. Table of

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some p-adic differential equations

We investigate various properties of p-adic differential equations which have as a solution an analytic function of the form Fk(x) = ∑ n≥0 n!Pk(n)x , where Pk(n) = n +Ck−1n k−1+· · ·+C0 is a polynomial in n with Ci ∈ Z (in a more general case Ci ∈ Q or Ci ∈ Cp) , and the region of convergence is | x |p< p 1 p−1 . For some special classes of Pk(n), as well as for the general case, the existence ...

متن کامل

Sums of Products of Poly-Bernoulli Numbers of Negative Index

We give a formula that expresses a sum of products of poly-Bernoulli numbers of negative index as a linear combination of poly-Bernoulli numbers. More generally, we show that if a two-variable formal power series satisfies a certain partial differential equation, then its coefficients satisfy this type of formula. As an appendix, we solve this partial differential equation.

متن کامل

Arithmetic Identities Involving Bernoulli and Euler Numbers

Let p be a fixed odd prime number. Throughout this paper, Zp, Qp, and Cp will denote the ring of p-adic rational integers, the field of p-adic rational numbers, and the completion of algebraic closure of Qp, respectively. The p-adic norm is normalized so that |p|p 1/p. Let N be the set of natural numbers and Z N ∪ {0}. Let UD Zp be the space of uniformly differentiable functions on Zp. For f ∈ ...

متن کامل

Multivariate P-adic L-function

In the recent, many mathematicians studied the multiple zeta function in the complex number field. In this paper we construct the p-adic analogue of multiple zeta function which interpolates the generalized multiple Bernoulli numbers attached to χ at negative integers. §1. Introduction Let p be a fixed prime. Throughout this paper Z p , Q p , C and C p will, respectively, denote the ring of p-a...

متن کامل

A Study on the p-Adic q-Integral Representation on Zp Associated with the Weighted q-Bernstein and q-Bernoulli Polynomials

Let p be a fixed prime number. Throughout this paper, p, p , and p will denote the ring of p-adic integers, the field of p-adic rational numbers, and the completion of the algebraic closure of p , respectively. Let be the set of natural numbers, and let ∪ {0}. Let νp be the normalized exponential valuation of p with |p|p p−νp p 1/p. Let q be regarded as either a complex number q ∈ or a p-adic n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014